Stability of a Floating Body
- Applications to Naval Architecture & Ocean Eng.

1. Inclination test
2. Stability test
Inclination Test

Apply a load that cause the barge to tilt (move W_h and W_v in x- and z-direction); Measure the angle of tilt; Check if the measured tilt angle matches with theoretical value; If not completely matching, discuss errors ...

When $\theta=0$:
Center of gravity G and Buoyancy center B of the barge are both in-line with z-axis and there is no net moment w.r.t. origin O.

When moving W_H to the right of the origin, you introduce a load that gives a net moment w.r.t. origin O. The barge must adjust itself to balance that net moment. This causes the barge to tilt with an angle θ.

d is the submerged depth when $\theta=0$
B is somewhere below G
Force balance requires:
\[F_w = F_B \]

Moment balance requires:
\[\sum M_o = 0 \]

Define counterclockwise as positive

\(F_w \) is the body force acting through the center of gravity \(G \)

\(F_B \) is buoyancy force acting through buoyancy center \(B \)
\[\sum M_O = 0 \]

\[\Rightarrow -\left(F_w \cos \theta x_G + F_w \sin \theta z_G \right) + \left(F_B \cos \theta x_B + F_B \sin \theta z_B \right) = 0 \]

Because \(F_w = F_B \)

\[\Rightarrow -\left(x_G \cos \theta + z_G \sin \theta \right) + \left(x_B \cos \theta + z_B \sin \theta \right) = 0 \]

\(x_G, z_G, x_B, z_B \) are given in lab handout

\[x_B = \frac{b^2 \tan \theta}{12d} \quad z_B = \frac{b^2 \tan^2 \theta}{24d} + \frac{d}{2} \]

(related to the shape of the immersed volume)

\[x_G = \frac{W_h x_h}{W} \quad z_G = \frac{W_B z_B + W_v z_v + W_h z_h}{W} \]

(depends on the location of weights)

Weight of barge \(W_b, z_b = 5.2 \) cm

\(x_h \) and \(z_v \) change every run as you move the weights

Remember to measure \(z_h \)

\[\Rightarrow \frac{b^2}{24d} \left(\tan \theta \right)^3 + \left(\frac{b^2}{12d} + \frac{d}{2} - z_G \right) \tan \theta - x_G = 0 \]

Algebraic equation for \(\tan \theta \). Find \(\tan \theta \) using Matlab function “roots”
Stability Test

F_w, the weight of floating body gives “destabilizing” moment, clockwise, makes θ larger.

F_B, the buoyancy force gives a “stabilizing” moment, counterclockwise, make θ smaller.

During the experiment, you will remove W_H and put it on the mast (z-axis) with W_v. As you move W_v (or W_H) higher, z_G increases. For a given small angle of perturbation, increased z_G gives larger destabilizing moment. If this is too large, the stabilizing moment due to F_B cannot bring the barge back!
Previously from balance of moment:

\[\sum M_0 = \frac{b^2}{24d} (\tan \theta)^3 + \left(\frac{b^2}{12d} + \frac{d}{2} - z_G \right) \tan \theta \]

with \(x_G = 0 \) in this case

We need \(\sum M_0 > 0 \) (counter-clockwise) so that restoring force due to buoyancy is greater than destabilize for due to gravitational weight.

For small \(\theta \), \((\tan \theta)^3 \ll \tan \theta \)

\[\left(\frac{b^2}{12d} + \frac{d}{2} - z_G \right) \tan \theta > 0 \]

\[\therefore z_G < \frac{b^2}{12d} + \frac{d}{2} \] for stable condition.

i.e., for a given barge, \(\frac{b^2}{12d} + \frac{d}{2} \) is fixed. If we distribute the weight more to the bottom of the barge, the system is more stable.