Flow from a Hole

Part I:
Measure the trajectory of the jet flow in order to determine velocity leaving the hole.
Test measure results with Bernoulli equation and conservation of energy;
Get the velocity loss coefficient C_v.

Part II:
Measure flow discharge and get C_d based on constant head exp. (Part I) and variable head exp. (Part II).
Understand “vena contracta”.

Part III:
In your report, compare C_v and C_d you obtained with text book results.
To get exit flow velocity at ②, use Bernoulli equation. Note: Energy loss is neglected here because Bernoulli equation is derived based on inviscid, steady, incompressible flow assumptions.

Apply Bernoulli equation from ① \rightarrow ②

\[p_1 + \frac{1}{2} \rho V_1^2 + \gamma z_1 = p_2 + \frac{1}{2} \rho V_2^2 + \gamma z_2 \]

\(\gamma = \rho g \): specific gravity of water

\[V_2^2 = \frac{2\gamma}{\rho} (z_1 - z_2) \]

\[\Rightarrow V_2 = \sqrt{2gh} \]
In reality, there shall be some energy loss. Hence, we shall use conservation of energy:

Apply conservation of energy from ① → ②:

\[
\frac{P_1^0}{\gamma} + \frac{V_1^2}{2g} + z_1 = \frac{P_2^0}{\gamma} + \frac{V_2^2}{2g} + z_2 + h_L
\]

\(h_L \): head loss

\[
V_2 = \sqrt{2g(h - h_L)}
\]

\[
= \sqrt{2gh \left(1 - \sqrt{\frac{h_L}{h}}\right)}
\]

define: \(C_v = 1 - \sqrt{\frac{h_L}{h}} \)

\[
\Rightarrow V_2 = C_v \sqrt{2gh}
\]

\(C_v \) is determined empirically
Consider an object (a control volume of water) with x-direction velocity V_2 but in the mean time, also falling due to gravity:

$$x = V_2 t$$
$$y = \frac{1}{2} gt^2$$

To eliminate t, use $t = \frac{x}{V_2}$

$$\Rightarrow y = \frac{1}{2} g \frac{x^2}{V^2}$$

previously: $V_2 = C_v \sqrt{2gh}$

$$\Rightarrow x = C_v \sqrt{4yh}$$

During experiment, measure trajectory to get x_i, y_i. Then plot x vs. $(4yh)^{1/2}$:

Slope of this line is C_v
Determining the discharge Q

$$ Q = V_2 \cdot A_j = V_j \cdot A_j $$

We only know orifice opening area A_0 not A_j.

Due to vena contracta d_j is smaller than d_0. Therefore, we need to estimate the velocity at cross-section 0 (or estimate the area at cross-section j).

Continuity equation:

$$ V_0 = V_j \cdot \frac{A_j}{A_0} \quad \Rightarrow \quad \text{define coefficient of contraction:} \quad C_c = \frac{A_j}{A_0} \quad \therefore V_0 = C_c V_j $$

$$ Q = V_0 A_0 = C_c \cdot V_j A_0 = C_c C_v \sqrt{2gh} A_0 = C_d A_0 \sqrt{2gh} $$

We know V_j from previous page

$C_d = C_v C_c$ is determined empirically
During the experiment:

1) In the constant head experiment, we can simply calculate

\[C_d = \frac{Q}{A_0 \sqrt{2gh}} \]

with \(A_0 = \frac{\pi}{4} d_0^2 \)

i.e., measure five different sets of \(h \) and \(Q \); get \(C_d \) from linear regression.

2) In the variable head experiment, \(h \) decreases in time. If variable head \(h(t) \) is taken into account, we need to consider mass conservation of the entire tank:

\[A \frac{dh}{dt} = -C_d A_0 \sqrt{2gh} \]

\((A=160 \text{ cm}^2 \text{ is the cross-sectional area of the tank})\)
Given initial condition \(h(0) \) at \(t=0 \):

\[
\frac{dh}{\sqrt{h}} = -C_d \frac{A_0}{A} \sqrt{2g \, dt}
\]

\[
\Rightarrow 2\sqrt{h} = -C_d \frac{A_0}{A} \sqrt{2g \, t} + B \quad \text{Apply initial condition: } B = 2\sqrt{h(0)}
\]

\[
\Rightarrow \sqrt{h} = -\frac{C_d}{2} \frac{A_0}{A} \sqrt{2g \, t} + 2\sqrt{h(0)}
\]

\[
\therefore \sqrt{\frac{h}{h(0)}} = 1 - \frac{C_d}{\sqrt{2}} \frac{A_0}{A} \sqrt{\frac{g}{h(0)}} \, t
\]

\[
\frac{\sqrt{h}}{\sqrt{h(0)}}
\]

\[
\text{Slope of this line is } -\frac{C_d}{\sqrt{2}} \frac{A_0}{A} \sqrt{\frac{g}{h(0)}}
\]

\[
\Rightarrow C_d \text{ can be determined}
\]